

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 3.75 | $\geq 0.5$ | 181.8 | $27.5 \pm 10 \%$ |
| 6 | 4.5 | $\geq 0.6$ | 166.6 | $36 \pm 10 \%$ |
| 12 | 9.0 | $\geq 1.2$ | 85.7 | $140 \pm 10 \%$ |
| 18 | 13.5 | $\geq 1.8$ | 66.6 | $270 \pm 10 \%$ |
| 24 | 18.0 | $\geq 2.4$ | 33.3 | $720 \pm 10 \%$ |
| 48 | 36.0 | $\geq 4.8$ | 20.8 | 2'300 $\pm 10 \%$ |
| 60 | 45.0 | $\geq 6.0$ | 13.6 | $4^{4} 400 \pm 13 \%$ |
| 110 | 82.5 | $\geq 11.0$ | 11.0 | $10^{\prime} 000 \pm 15 \%$ |

Circuit Diagram (view on relay upper side)


Insulation Data

| - Double or reinforced insulation <br> - . - Air and creepage distance <br> - Test voltage | at 250 VAC $>5.5 \mathrm{~mm}$ $4{ }^{\prime} 000 \mathrm{~V} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$ |
| :---: | :---: |
| - Double or reinforced insulation | ation at 250VAC |
| - Air and creepage distance | $>14 \mathrm{~mm}$ |
| - Test voltage 5 ${ }^{\circ} 0$ | $5^{6} 000 \mathrm{~V} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$ |
| Test voltage contact open 1'5 | $1 \times 500 \mathrm{~V} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$ |
| Creepage resistance | CTI 550 |
| Pollution degree | 2 |
| Overvoltage category |  |
| Insulation resistance at Up 500VDC | 100M |
|  |  |
| Additional Data |  |
| Mechanical endurance $>50$ | $50 \times 10^{6}$ operations |
| Switching frequency, mechanical | 15 Hz |
| Response time (all NO closed) | typically 12 ms |
| Drop-out time** (all NC closed) | typically 5ms |
| Bounce time of NO contact | typically 4ms |
| Bounce time of NC contact | typically 8ms |
| Shock resistance 16ms | NO > 10g |
|  | $\mathrm{NC}>2.5 \mathrm{~g}$ |
| Vibration resistance ( $10-55 \mathrm{~Hz}$ ) | $\mathrm{NO}>10 \mathrm{~g}$ |
|  | $N C>1 g$ |
| Resistance to short circuiting contacts |  |
| 1 1'000A SCPD 6A gG/gL (pre-fuse) |  |
| Ambient temperature | $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Thermal resistance | 50K/W |
| Temperature limit for coil | $120^{\circ} \mathrm{C}$ |
| Weight | ca. 20 g |
| Mounting position | any |
| Type of protection | RT II |
| Solder bath temperature | $270^{\circ} \mathrm{C} / 5 \mathrm{~s}$ |

Tests, Regulations

Approvals

## (t) ${ }^{9} \boldsymbol{T l}_{\text {us }} \triangle$

| UL File E188953 | Sec. 1 |
| :--- | ---: |
| Insulation class IEC 60664-1 | 250VAC |
| Protection class II | VDE 0106 |
| Fire protection requirements | UL 94 / V1 |


| Options, Accessories |  |
| :---: | :---: |
| PCB socket, DIN rail socket | see page 28 |
| Sealed RT III | on request |
| Dust resistant with O-Ring |  |
| Contact material with 4-6 $\mu \mathrm{m} \mathrm{Au}$ |  |
| Product Key |  |
| SGR282Z 24VDC AU6 08 |  |
|  | -ring dust resistant Gold plating $4-6 \mu \mathrm{~m}$ -Coil voltage -Type designation |

Contact Lifetime for NO Contacts


Maximal switching characteristics (DIN EN60947-5-1,
Tab. C2)
AC 15: $\quad 230 \mathrm{~V} / 3 \mathrm{~A}$
DC 13: $\quad 24 \mathrm{~V} / 4 \mathrm{~A}$
UL 508: C300
Maximal contact load at AC 1 with 230 V :
2 contacts with 6A each

## Gold contacts with 4-6 m layer thickness

When switching high voltages and currents the layer of gold is already destroyed after a few switching operations. Once the gold layer is damaged due to the switching of high loads, this contact must not be used anymore for signal and control current circuits. Then safe contact making is only possible at high loads with the formation of sparks.

## Load Limit Curve with Direct Current <br>  <br> 1) Inductive load L/R 40 ms

2) Resistive load

Excitation Voltage Range


